Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells
نویسندگان
چکیده
Dendritic cells (DC) represent potent antigen-presenting cells for the induction of T cell-dependent immune responses. Previous work on antigen uptake and presentation by human DC is based largely on studies of blood DC that have been cultured for various periods of time before analysis. These cultured cells may therefore have undergone a maturation process from precursors that have different capacities for antigen capture and presentation. We have now used immunoelectron microscopy and antigen presentation assays to compare freshly isolated DC (f-DC) and cultured DC (c-DC). f-DC display a round appearance, whereas c-DC display characteristic long processes. c-DC express much more cell surface major histocompatibility complex (MHC) class II than f-DC. The uptake of colloidal gold-labeled bovine serum albumin (BSA), however, is greater in f-DC, as is the presentation of 65-kD heat shock protein to T cell clones. The most striking discovery is that the majority of MHC class II molecules in both f-DC and c-DC occur in intracellular vacuoles with a complex shape (multivesicular and multilaminar). These MHC class II enriched compartments (MIIC) represent the site to which BSA is transported within 30 min. Although MIIC appear as more dense structures with less MHC class II molecules in f-DC than c-DC, the marker characteristics are very similar. The MIIC in both types of DC are acidic, contain invariant chain, and express the recently described HLA-DM molecule that can contribute to antigen presentation. CD19+ peripheral blood B cells have fewer MIIC and surface MHC class II expression than DCs, while monocytes had low levels of MIIC and surface MHC class II. These results demonstrate in dendritic cells the elaborate development of MIIC expressing several of the components that are required for efficient antigen presentation.
منابع مشابه
Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain
Two prior studies with a small number of T cell lines have shown that the presentation of native protein antigens by epidermal Langerhans cells (LC) is regulated. When freshly isolated, LC are efficient antigen-presenting cells (APC), but after a period of culture LC are inefficient or even inactive. The deficit in culture seems to be a selective loss in antigen processing, since cultured LC ar...
متن کاملHuman umbilical cord blood-derived stromal cells suppress xenogeneic immune cell response in vitro.
AIM To explore immunological properties of human umbilical cord blood-derived stromal cells (hUCBDSC) and their effect on xenogeneic immune cells in vitro. METHODS Immunological phenotype of freshly isolated and cryopreserved hUCBDSCs was evaluated by flow cytometry. Xenogeneic splenic T-cells were stimulated by phytohemaglutinin A (PHA) or dendritic cells in the absence or presence of hUCBDS...
متن کاملLiterature watch. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment.
The discovery of marker proteins of human blood (BECs) and lymphatic endothelial cells (LECs) has allowed researchers to isolate these cells. So far, efforts to unravel their transcriptional and functional programs made use of cultured cells only. Hence, it is unknown to which extent previously identified LEC- and BEC-specific programs are representative of the in vivo situation. Here, we defin...
متن کاملDendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products
We have previously demonstrated that human peripheral blood low density mononuclear cells cultured in granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 develop into dendritic cells (DCs) that are extremely efficient in presenting soluble antigens to T cells. To identify the mechanisms responsible for efficient antigen capture, we studied the endocytic capacity of ...
متن کاملDendritic Cells Use Macropinocytosis and the Mannose Receptor to Concentrate Macromolecules in the Major Histocompatibility Complex Class 1I Compartment: Downregulation by Cytokines and Bacterial Products
We have previously demonstrated that human peripheral blood low density mononuclear cells cultured in granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 develop into dendritic cells (DCs) that are extremely efficient in presenting soluble antigens to T ceils. To identify the mechanisms responsible for efficient antigen capture, we studied the endocytic capacity of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 182 شماره
صفحات -
تاریخ انتشار 1995